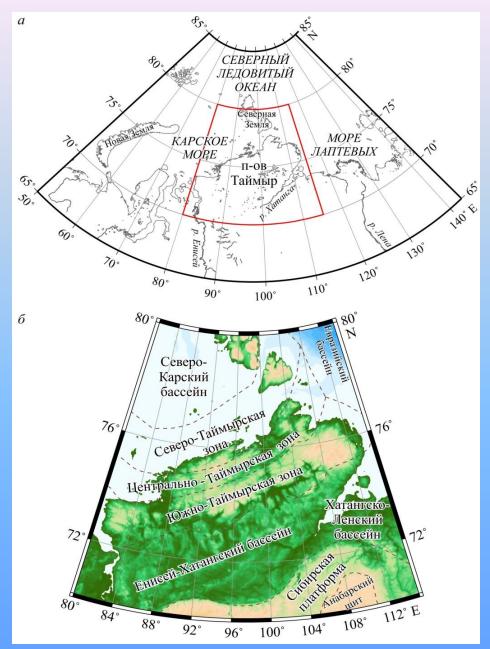
ПАРАМЕТРЫ МАГНИТОАКТИВНОГО СЛОЯ ЛИТОСФЕРЫ ПОД ПОЛУОСТРОВОМ ТАЙМЫР

А.И. Филиппова^{1,2}, С.В. Филиппов^{1,2}


¹Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова, г. Москва, г. Троицк

²Институт теории прогноза землетрясений и математической геофизики РАН, г. Москва

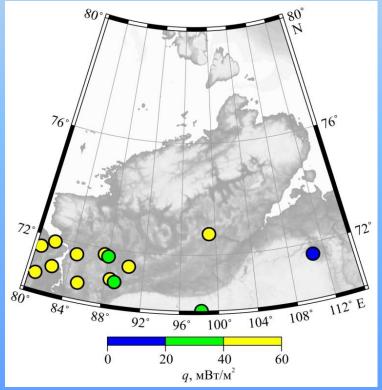
XXIV Уральская молодежная научная школа по геофизике 20– 24 марта 2023 г., г. Пермь

Введение

Задачи работы

задача работы состоит Основная определении глубины залегания нижней литосферных границы магнитных источников под полуостровом Таймыр и прилегающими к нему территориями $(70^{\circ}-80^{\circ} \text{ N}, 80^{\circ}-115^{\circ} \text{ E})$ (рис. 1). По этим оценивается данным нами степень прогрева литосферы с учетом того, что полученные значения соответствуют глубинам, которых на достигается температура точки Кюри входящих в литосферы магнитных состав минералов, основным ИЗ которых является магнетит с с температурой точки Кюри 578°C (Langel and Hinze, 1998).

Рис. 1. Положение области исследования (*a*) и ее тектоническая схема (*б*) по (*Афанасенков и др.*, 2016).


Актуальность исследования

Оценки литосферных температур используются для

- 1. Решения задач современной геодинамики и реконструкции состояния земных недр в прошлом;
- 2. Решения практических задач, например, связанных с нефтегазоносностью или обнаружения областей, пригодных для использования термальной энергии.

Подходы к оценке литосферных температур

- 1. Расчет геотерм по тепловому потоку (Goes et al. 2020);
- 2. По данным о мантийных ксенолитах (например, в модели TC 1 (Artemieva, 2006));
- 3. Петрофизическое моделирование (Vs -> T, например, *Lebedev et al.*, 2017);
- 4. По распределению гипоцентров землетрясений (Sibson 1982, 1984);
- 5. По геомагнитным данным (данная работа и многие другие).

Предыдущие исследования

- 1. (*Li et al.*, 2017; *Gard*, *Hasterok*, 2021) глобальные распределения глубины нижней границы;
- 2. (*Lu et al.*, 2022) распределение глубины нижней границы для всей Арктики.

Получены разными методами и по разным исходным данным. Непосредственно для Таймыра разница глубин по имеющимся моделям достигает ~20 км.

Рис. 2. Поверхностный тепловой поток исследуемой территории (*Fuchs et al.*, 2021).

Исходные данные и методы

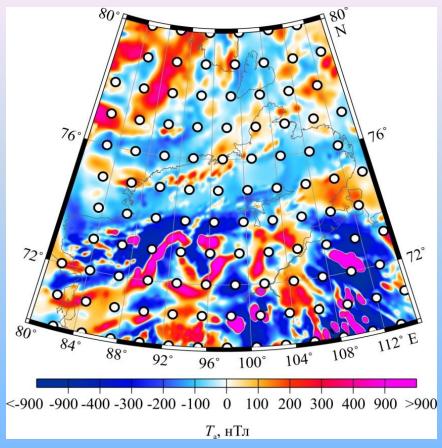


Рис. 2. Исходные данные: литосферное геомагнитное поле на высоте 4 км согласно модели EMAG2v3 (Meyer et al., 2017). Горизонтальное разрешение модели - 2 угловые минуты. Кружками обозначены центральные точки блоков 200 х 200 км, в пределах которых выполнялся спектральный анализ.

Геомагнитное поле = главное поле (95%) + аномальное (литосферное) поле (4%) + внешнее поле (1%) (Яновский, 1978)

Распределение намагниченности в МАС

1. Случайное

(Spector and Grant, 1970; Bhattacharyya and Leu, 1975; Okubo et al., 1985; Tanaka et al., 1999; Finn and Ravat, 2004; Ravat, 2004; Ravat et al., 2007)

Определяемые параметры: глубины Z_t , Z_0 , Z_b

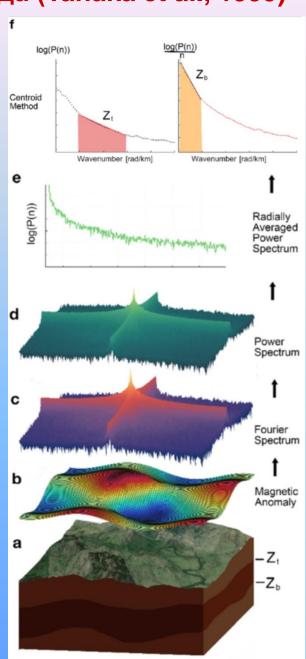
2. Фрактальное

(Maus and Dimri, 1994; Maus et al., 1997; Bouligand et al., 2009; Bansal et al., 2011; Li et al., 2017)

Определяемые параметры: глубины Z_t , Z_0 , Z_b ; индекс β

Расчет параметров МАС: метод центроида (Tanaka et al., 1999)

Определяемые параметры:


глубина верхней границы (Z_t): $\ln \left[\Phi_{\Delta T}(|k|)^{1/2} \right] = \ln B - |k| Z_t$ глубина центра масс (Z_0): $\ln \left[\Phi_{\Delta T}(|k|)^{1/2}/|k| \right] = \ln C - |k| Z_0$ глубина нижней границы (Z_b): $Z_b = 2Z_0 - Z_t$ $\Phi_{\Delta T}$ — азимутально-усредненный Фурье-спектр мощности аномалий геомагнитного поля; $|k| = \sqrt{k_x^2 + k_y^2}$ — модуль волнового числа; B, C — const.

Погрешности вычисления параметров MAC (*Okubo, Matsunaga, 1994; Salazar et al., 2017*): $\varepsilon = \frac{\sigma}{|k_2| - |k_1|}$

Размер окна: **200 x 200 км**

Расчет азимутально-усредненных Фурье-спектров мощности аномалий геомагнитного поля: пакет **Fourpot 1.3b** (*Pirttijärvi*, 2015)

Рис. 3. Этапы расчетов параметров MAC (*Núñez Demarco et al.*, 2021): $\mathbf{a} - \text{MAC}$; $\mathbf{b} - \text{модель литосферного геомагнитного поля; <math>\mathbf{c} - \Phi$ урье-спектр; $\mathbf{d} - \text{спектр мощности; } \mathbf{e} -$ азимутально-усредненный спектр мощности; $\mathbf{f} - \text{определение глубин по методу центроида.}$

Результаты: глубина верхней границы

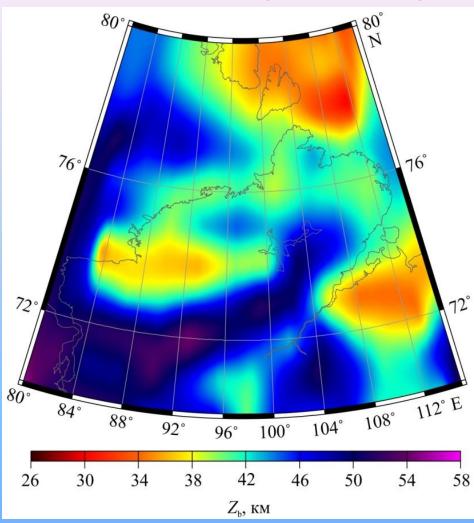


Рис. 5. Глубина верхней границы литосферных магнитных источников (а) и мощность осадочных отложений согласно модели CRUST 1.0 (*Laske et al.*, 2013) (б).

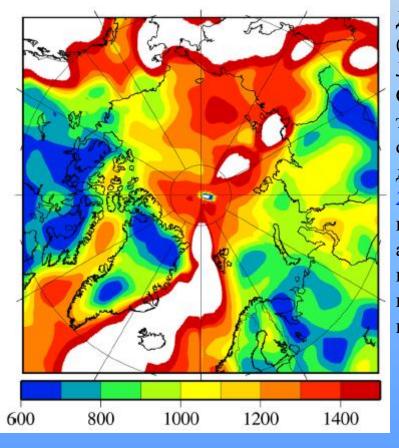
Min мощность осадков: Анабарский щит Сибирской платформы и практически повсеместно в пределах Таймырского складчатого пояса (*Gramberg et al., 1999; Laske et al., 2013*); **Max** мощность осадков: Енисей-Хатангский и Хатангско-Ленский бассейны (9–14 км по

различным данным (*Gramberg et al.*, 1999; *Laske et al.*, 2013; *Cherepanova et al.*, 2013)), Северо-Карский бассейн – 8 км (*Laske et al.*, 2013) или даже 14 км (*Gramberg et al.*, 1999).

Результаты: глубина нижней границы

Рис. 6. Глубина нижней границы литосферных магнитных источников.

Міп Z_b (< 36 км): Евразийский бассейн и соседние с ним территории шельфа моря Лаптевых и островов архипелага Северная Земля. Относительно неглубокое положение нижней границы магнитоактивного слоя литосферы (\sim 36 км) также характерно для Хатангско-Ленского бассейна.


Таймырский складчатый пояс: минимум глубины $Z_{\rm b}$ (до 38 км) на западе Южно-Таймырской зоны, а в центре этой зоны $Z_{\rm b}$ заглубляется до 48 км.

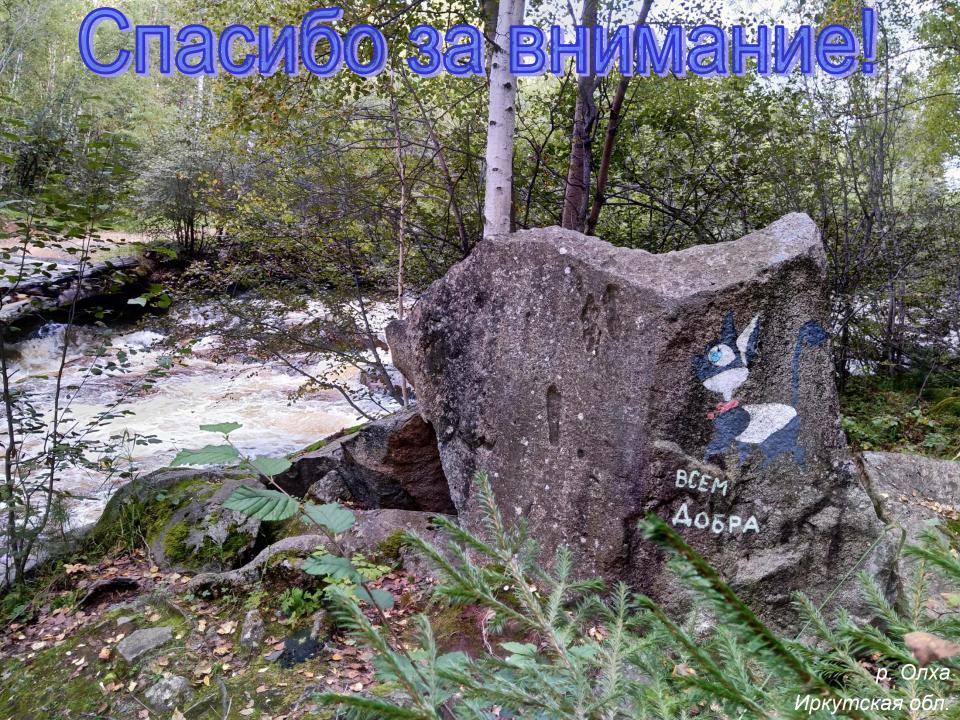
Для Центрально-Таймырской и Северо-Таймырской зон в пределах полуострова глубина $Z_{\rm b}$ составляет 40—44 км

Мах Z_b (50–55 км): Енисей-Хатангский бассейн. Несколько меньшие значения глубины — около 48 км с локальными минимумами до 42 км — наблюдаются под рассматриваемой частью Сибирской платформы. Карское море — 46–48 км.

Тепловой режим литосферы (независимые данные)

Для морей полученные результаты хорошо согласуются с температурными моделями, основанными на данных сейсмической томографии (*Cammarano and Guerri*, 2017; *Lebedev et al.*, 2017; *Priestley et al.*, 2019). Полуостров Таймыр характеризуется промежуточными относительно соседних структур значениями температур во всех упомянутых работах, а вариации температуры под полуостровом не выделяются, что связано с невысоким горизонтальным разрешением сейсмотомографии. Изотерма 550°C - глубина примерно 35 км в модели ТС1 (*Artemieva*, 2006). Согласуется с нашими результатами (рис. 6), учитывая, что для областей с относительно холодной литосферой температурные градиенты на глубине малы (*Filippova et al.*, 2021).

Для юга территории более противоречивые данные. (Lebedev et al., 2017) Енисей-Хатангский и Хатангско-Ленский бассейны, также как примыкающая к ним часть Сибирской платформы характеризуются средними температурами 1000–1100°С, то есть не выделяются относительно Таймырского полуострова. Все остальные данные - минимум температур. В работах (Artemieva, 2006; Cammarano and Guerri, 2017) он наиболее выражен под Анабарским щитом Сибирской платформы, а в распределении (Priestley et al., 2019) дополнительно присутствует второй минимум значений температуры под Енисей-Хатангским бассейном, что наиболее близко к нашим результатам (рис. 6).


Рис. 7. Средняя Т (°C) на глубинах 80-150 км (*Lebedev et al.*, 2017).

Выводы

- 1. Минимальные значения глубины верхней границы литосферных магнитных источников ($< 2.5 \, \mathrm{кm}$) характерны для всего Таймырского складчатого пояса и рассматриваемой части Сибирской платформы, максимальные ($> 6 \, \mathrm{km}$) для Северо-Карского бассейна. Под Енисей-Хатангским и Хатангско-Ленским бассейнами верхняя граница (Z_{tmax} =6.5 км) расположена существенно выше подошвы осадочного слоя (10–14 км), что может быть связано с повсеместным внедрением базальтовых траппов в осадочный слой.
- 2. Минимальные значения глубины нижней границы литосферных магнитных источников (< 36 км) приурочены к Евразийскому бассейну и соседними с ним территориями шельфа моря Лаптевых и островов архипелага Северная Земля. Максимальных значений (> 48 км) этот параметр достигает под Енисей-Хатангским и Северо-Карским бассейнами. Под Таймыром прослеживается увеличение глубины от 38 до 48 км в восточном направлении.
- 3. В пределах рассматриваемого региона литосфера наиболее прогрета под Евразийским бассейном и соседними с ним территориями шельфа моря Лаптевых, а наиболее холодной и, соответственно, мощной литосферой характеризуются Северо-Карский, Енисей-Хатангский бассейны и Сибирская платформа, что подтверждается независимыми геофизическими данными.

Расширенная версия: Филиппова А.И., Филиппов С.В. Тепловой режим литосферы под полуостровом Таймыр по геомагнитным данным // Геомагнетизм и Аэрономия. 2023. Т. 63. № 3. doi: 10.31857/S0016794022600600

Работа выполнена при финансовой поддержке РНФ, проект № 21-77-10070

