Зона фазовых переходов мантии – новые результаты

Андрей Гоев

ИДГ РАН, Москва

Пермь, 2025

Строение Земли

1

Основные границы

Региональные сети

Методы изучения строения оболочек Земли

Что нужно?

-140 -160 -180 -200 0.01

0.1

10

1

Period [s]

100

Метод функций приемника

Использует обменные волны от контрастных сейсмических границ

Подразделяется на два направления по типам обменных волн

Позволяет смоделировать локальную скоростную структуру вблизи станции

Позволяет произвести оценки аномалий границ зоны фазовых переходов

Критерии отбора исходных данных

Критериями пригодности сейсмических событий к обработке являются:

- 1. Импульсная форма первой падающей волны
- 2. Диапазон эпицентральных расстояний 40°-105°
- 3. Магнитуда события не менее 5.5
- 4. Высокое (более 3) отношение сигнал/шум
- 5. Изолированность целевой падающей волны (Р или S)

Lithosphere-Asthenosphere boundary (LAB)

Rychert et al., 2020; Tharimena, Rychert, & Harmon, 2017; Tharimena, Rychert, Harmon, & White, 2017; Rychert & Shearer, 2009; Rychert et al., 2010; Artemieva, 2006; Stein & Stein, 1992; Hasterok, 2013; Audet & Burgman, 2011; Burov & Diament, 1995; Watts et al., 2013; Steinberger & Becker, 2018; Nataf & Ricard, 1996

LAB

1) Различные методы дают чрезвычайно различные значения глубины LAB. Более-менее согласованные результаты можно отнести только к океанической литосфере;

2) Мощность литосферы растет с глубиной, при этом начиная с некоторого возраста (возможно в некоторых геодинамических обстановках???) в литосферной мантии формируются негативные границы, что затрудняет определение LAB для кратонов;

3) Для молодой литосферы (от 0 до 36 млн лет) глубина LAB увеличивается с возрастом до глубины 64 км. Под более древним океанским дном (>36 млн лет) мощность литосферы колеблется в основном от 40 до 90 км. Под фанерозойскими континентальными областями мощность литосферы в основном колеблется от 60 до 110 км, хотя диапазон глубин гораздо больше за счет утонения в рифтах и утолщения под горными цепями. Под кратонами глубина LAB составляет в среднем 130–200 км, но может достигать и больших значений – до 250 км и более.

3) LAB связано, вероятно, с присутствием подплава. Однако его происхождение и параметры до конца не ясны

Mid-Lithosphere discontinuity (MLD)

MLD (mid-lithosphere discontinuity) обнаруженная в конце 90х негативная сейсмическая под кратонами.

Впервые показана по результатам ГСЗ и DSS в Фенноскандии и Сибири. Встречаются аббревиатуры 8° discontinuity и границы N1, N2

Lebedev et al.,2021; Fu and Li, 2024 11

MLD

MLD важна для стабильности областей кратонов и подвержена разрушениям в рамках плюмлитосферных взаимодействий

Wang, Kusky, 2019

MLD

1) MLD обнаружена под всеми кратонами и в некоторых частях океанической литосферы;

2) Глубина залегания этой границы варьируется и, по всей видимости, зависит от тектонической истории исследуемого региона;

3) Механизм формирования MLD до конца не ясен – наличие подплава, внутри-литосферная "конвекция" (channel flow) из-за разрушения химической LAB, серпентинизация оливина в присутствии флюида, изменение состава и тд.

Новые модели строения северо-восточной части Фенноскандинавского щита

Схема глубины коро-мантийного перехода северовосточной части Фенноскандинавского щита

Схема глубины кровли MLD северо-восточной части Фенноскандинавского щита

Схема глубины подошвы MLD северо-восточной части Фенноскандинавского щита

Схема глубинного строения Кольского региона

Вопросы выявления реликтов плюмовых процессов в связи с формированием мультиметальных месторождений

Гоев А.Г. Скоростное строение земной коры и верхней мантии Печенгского рудного района и сопредельных территорий в северо-западной части Лапландско-Кольского орогена методом функций приемника // Записки Горного института. 2024. Т. 266. С. 188-198.

Зона фазовых переходов верхней мантии

Глобальная модель глубин погружения слэбов

Hayes et al. Slab2, a comprehensive subduction zone geometry model // Science. 2018. Vol. **362**. P. 58-61. DOI:10.1126/science.aat4723

Зона фазовых переходов верхней мантии

(a) 3-D wavespeed model

Из-за "застревания" слэбов в зоне фазовых переходов образуется выраженная латеральная анизотропия вещественного состава

Кроме того, над высокоскоростным слэбом формируется может формироваться слой пониженных скоростей – либо из-за подъема разогретого вещества нижней мантии либо дегидратации самого слэба

Guo, Z., & Zhou, Y. (2021). Stagnant slabs and their return flows from finite-frequency tomography of the 410-km and 660-km discontinuities. Journal of Geophysical Research: Solid Earth, 126, e2020JB021099

Ishii, T., Ohtani, E. Dry metastable olivine and slab deformation in a wet subducting slab. *Nat. Geosci.* **14**, 526–530 (2021).

Goes, S., Yu, C., Ballmer, M.D. *et al.* Compositional heterogeneity in the mantle transition zone. *Nat Rev Earth Environ* **3**, 533–550 (2022). https://doi.org/10.1038/s43017-022-00312-w

Разрыв слэба под Японией

Sun M., Yu Y., Gao S., Liu K. Stagnation and tearing of the subducting northwest Pacific slab // Geology. 2022. Vol. 50. № 6. P. 676–680.

Зона фазовых переходов верхней мантии

Fukao, Y., and M. Obayashi (2013), Subducted slabs stagnant above, penetrating through, and trapped belowthe 660 km discontinuity,J. Geophys. Res. Solid Earth,118, 5920–5938

Исходные данные

Сейсмичность

Исходные данные

Название	Код	Год	Число PRF
станции	станции	открытия	
Oxa	OKH	2005	297
Николаевск- на-Амуре	NKL	2013	65
Ноглики	NGL	2012	180
Тымовское	TYV	2005	485
Ванино	VNNI	2012	138
Углегорск	UGL	2012	190
Южно- Сахалинск	YSS	1993	856
Южно- Курильск	YUK	2012	130
Курильск	KUR	2012	134

Т410 - 40.8 с, Т660 - 67.7 с

Т410 - 45.2 с, Т660 - 67.9 с

Т410 - 44.8 с, Т660 - 69.5 с

Т410 - х с, Т660 - 70.4 с

Т410 - 45.8 с, Т660 - 69.6 с

Итоги

Регион	PRF	T410	Т660
44-46_140-145	647	40.8	67.7
47-49_140-145	374	45.2	67.9
49-51_140-145	563	44.8	69.5
51-53_138-145	399	-	70.4
53-55_138-146	51	45.8	69.6

Что дальше?

Fukao, Y., and M. Obayashi (2013), Subducted slabs stagnant above, penetrating through, and trapped belowthe 660 km discontinuity, J. Geophys. Res. Solid Earth, 118, 5920–5938

Спасибо за внимание!

Работа выполнена при поддержке проекта РНФ № 25-27-00240