XXVI Уральская молодежная научная школа по геофизике

АНАЛИЗ ДАННЫХ ЛАБОРАТОРНЫХ ЭКСПЕРИМЕНТОВ ПО ТЕРМИЧЕСКОМУ ВОЗДЕЙСТВИЮ НА ОБРАЗЦЫ МЕТАМОРФИЗИРОВАННЫХ ПЕСЧАНИКОВ

Индаков Г.С.^{1,2}, Казначеев П.А.²

¹ МГУ им. М.В.Ломоносова, г. Москва, Россия

² Институт физики Земли им. О.Ю. Шмидта РАН, г. Москва, Россия

Цели работы:

• Сравнительный анализ особенностей процесса термически стимулированного разрушения горных пород разного происхождения на основе статистики импульсов термостимулированной акустической эмиссии (ТАЭ)

• Выявление возможной взаимосвязи между особенностями ТАЭ в образцах горных пород и параметрами микроструктуры.

Значимость результатов исследования:

• Анализ вулканической и глубокофокусной сейсмичности

• Задачи повышения эффективности методов <u>разработки</u> месторождений <u>углеводородов</u> путем термического воздействия на породу-коллектор

Эксперименты с образцами гранитов и базальтов

Схема экспериментальной установки

Примеры образцов: a) – Гранит 167-7-30, б) – Гранит 156-12Г, в) – Базальт 391-big

[Индаков Г.С., Казначеев П.А, 2021]:

- Характер развития термически стимулированного разрушения не зависит от типа породы;
- 2. Чем выше средняя за период нагрева активность ТАЭ, тем ниже b-value (наклон графика повторяемости)

(ОМП, ценз. выборка):

156-12A 30 CM LATOAN

Средняя Сильная Критич.

Тип активности

-03-1-374 291-bis

0.0

Слабая

Диаграмма b-value для этапа нагрева

Активность АЭ:

N – число событий в окне,
 Δt – интервал времени между
 первым и последним событиями в окне.

Закон Г-Р (b-value):

$$\log_{10} N = a - bA$$

N – число событий A – их амплитуда a, b – параметры регрессии

Эксперименты с метапесчаниками

[Морозов Ю.А. и др., 2019]

- 18 образцов метатерригенных горных пород Северного Приладожья различного уровня глубинности (метапесчаники); данные по ТАЭ [**Казначеев П.А. и др., 2019**]
- Исходные осадочные г.п. претерпели метаморфизм на различных глубинах и при разных pT-условиях (около 1.5 млрд лет назад), что повлияло на их микроструктуру
- В зависимости от испытанных рТ-условий в ходе метаморфизма образцы классифицированы по зонам отбора (по результатам геотермобарометрических исследований)

		Параметры метаморфизма (ориентировочные значения)	
№ зоны	Количество	Значения давлений,	Значения температур,
отбора	образцов	р, кбар	T, °C
1	3	1.5 - 4	400 - 500
2	5	2 - 5	450 - 600
3	1	2.5 - 6	500 - 650
4	3	3 - 6.5	600 - 750
5	2	3 - 7	650 - 800
6	1	-	-

Предполагается, что при термическом воздействии

- 1. Средняя активность разрушения и соотношение слабых и сильных событий (b-value) коррелируют между собой;
- 2. Тип породы может не оказывать существенного влияния на развитие разрушения;
- 3. Размер микротрещин, образующихся при разном уровне термомеханических напряжений, связан с характерным размером зерен и (или) длиной межзерновых границ.

Исследуется вопрос о наличии корреляций между

- 1. Параметрами микроструктуры горных пород
- 2. Параметрами термически стимулированного разрушения.

Динамика активности и b-value для одного из образцов (эксп. sCK2):

Слева – этап нагрева, справа – этап охлаждения.

Параметры ТАЭ: активность и b-value (весь этап нагрева)

Интегральные активность и b-value на этапе нагрева для всех экспериментов, упорядоченные по возрастанию активности:

слева – средняя активность, справа – максимальная.

Параметры ТАЭ: АF и RA

Часто для анализа волновых форм используются совместно параметры RA и AF, представляющие собой: **RA** – отношение длительности нарастания сигнала к его максимальной амплитуде («Rise Time To Amplitude»)

AF («Average Frequency» – средняя частота) – отношение числа пересечений порогового уровня к общей длительности сигнала.

Упрощенная схема импульса АЭ

Диаграмма AF-RA для одного из образцов для второго цикла нагрева (до 729 °C, эксп. sCH2). Справа приведена визуализация плотности облака точек при AF < 800 кГц.

Мелкозернистый гранит (FG)

400 500

Среднезернистый гранит (MG)

Крупнозернистый гранит (CG)

a)

Фотографии a) структуры И распределения размеров зерен образцов для гранита С различным средним размером зерен.

б) Пиковая прочность, модуль деформация упругости И разрушения в зависимости от температуры для гранитов, охлажденных медленно И быстро.

[Shao et al., 2014]

(Производились циклы нагрева до температур 200, 400, 600, 800 °С с двумя типами охлаждения: медленным и быстрым. Затем все образцы испытывались на прочность условиях В без сжимающего напряжения внешнего давления при комнатной температуре.)

б)

Исследование микроструктуры

1.25 мм

1. Прямое ручное измерение (размер зерна – это средний характерный линейный размер сечения зерна по оценке эксперта)

Николи скрещены

2. Метод пересечения линий

(размер зерна – это размер, эквивалентный отрезку сечения опорной линии)

3. Планиметрические методы

(размер зерна – это объемновзвешенный размер зерна, пересчитанный из площади сечения зерна)

[Казначеев и др., 2024]

1.25 мм

Анализ параметров микроструктуры:

- Рассмотрены методы оценки размеров зерен по микрофотографии породы с оптического микроскопа:
 ручное измерение, 2. метод пересечения опорных линий, 3. квазипланиметрический метод
- Получены оценки размеров зерен методом пересечения опорных линий для нескольких образцов
- Результаты сопоставлены с оценкой размера зерен методом акустической спектроскопии

Оценка размеров зёрен методом пересечения опорных линий по данным оптической микроскопии для образца ЛВ1356

Согласно [**Papadakis, 1964**], <u>средний диаметр зерна</u> (в предположении о его форме, близкой к сферической) может быть найден по <u>медиане</u> распределения зёрен по линейным размерам:

$$\langle D \rangle_{opt} = 1.45 \cdot q_{50\%}$$

Параметр, мкм	Оптическая микроскопия	Акустическая спектроскопия	
	ЛВ1356		
<d></d>	55	50	
Dmax	150-215	160-200	
	ЛВ1312		
<d></d>	81	82.5	
Dmax	200-305	160-250	

[Подымова и др., 2024]

Параметры ТАЭ и микроструктуры: сопоставление

3

4

5

6

Взаимные зависимости некоторых ТАЭ величин размера И зерна, рассчитанного ПО медиане логнормального распределения для изображений масштабом 200 и 500 мкм. Цветом указан номер зоны отбора образцов.

Публикации по теме работы

Индаков Г.С., Казначеев П.А. Оценка статистических параметров потока импульсов термически стимулированной акустической эмиссии в лабораторных экспериментах // Ученые записки физического факультета Московского университета. 2021. № 1:2110501.

 Казначеев П.А., Индаков Г.С., Подымова Н.Б., Пономарев А.В., Матвеев М.А., Майбук З.-Ю.Я., Краюшкин Д.В. Методы оценки размеров зерен горных пород: обзор и сравнение // Наука и технологические разработки. 2024. Т. 103. № 2. – с. 3–23.

3. Подымова Н.Б., Пономарев А.В., Казначеев П.А., Багдасарян Т.Э., Матвеев М.А., Индаков Г.С. Количественная оценка характерных размеров зерен лабораторных образцов горных пород методом широкополосной оптико-акустической спектроскопии // Физика Земли. 2024. № 4. – с. 93–111.

ИСТИНА (Индаков Г.С.)