Типичный образ фор- и афтершокового режима при сильном землетрясении по результатам анализа обобщенной окрестности сильного события

Родкин М.В.

ИТПЗ РАН, <u>rodkin@mitp.ru</u> ИМГиГ ДВО РАН

Эмпирика:

В обобщенной окрестности сильного землетрясения (ООСЗ) вблизи момента обобщенного сильного землетрясения (ОСЗ) наблюдаются два вида аномалий:

- Одна отвечает степенному форшоковому каскаду и закону Омори-Утсу для афтершоков (характеризует динамику интенсивности потока событий).
- Вторая проявляется для текущих средних значений магнитуды, b-value, разнице (Mw-Mb), согласованности ориентаций очагов с механизмом главного события, средней глубины очагов, ряда иных характеристик).

Величина аномалии Υ нарастает по мере уменьшения времени до момента обобщенного главного события ΔT единообразным образом, как $\Upsilon = a - b \log |\Delta T|$; a,b>0 - параметры (1)

Интерпретация:

- 1. Сейсмический режим может быть описан моделью мультипликативного каскада с памятью (ММК). Эта модель описывает тенденцию уменьшения b-value в окрестности сильного события, каскад Омори, форшоковую активизацию, тенденцию сейсмического цикла. Модель очень общая. В ММК модели b-value = log(p)/log(k), где p параметр «неустойчивости»; k параметр «иерархичности среды», аналогично (1).
- 2. Похожие на (1) соотношения имеют место в кинетической модели Журкова.
- 3. Зависимость $\Upsilon = a b \log \Delta T$ новый закон сейсмологии???

Кратко об Обобщенной окрестности сильного землетрясения (OOC3):

Проблема:

Изменения сейсмического режима в окрестности каждого отдельного сильного землетрясения ОЧЕНЬ индивидуальны.

Различные особенности режима могут появляться при одном землетрясении и отсутствовать при другом. Разнообразие режимов столь значительно, что иногда ставится под сомнение выполнение закона Омори.

Что же действительно типично, а что случайно?

Задача построения Обобщенной окрестности сильного события: выделить и интерпретировать общие (типовые) особенности сейсмического режима на основе масштабируемого комплексирования данных по большому числу (сотни, до 1000) окрестностей сильных событий.

Методика построения ООСЗ

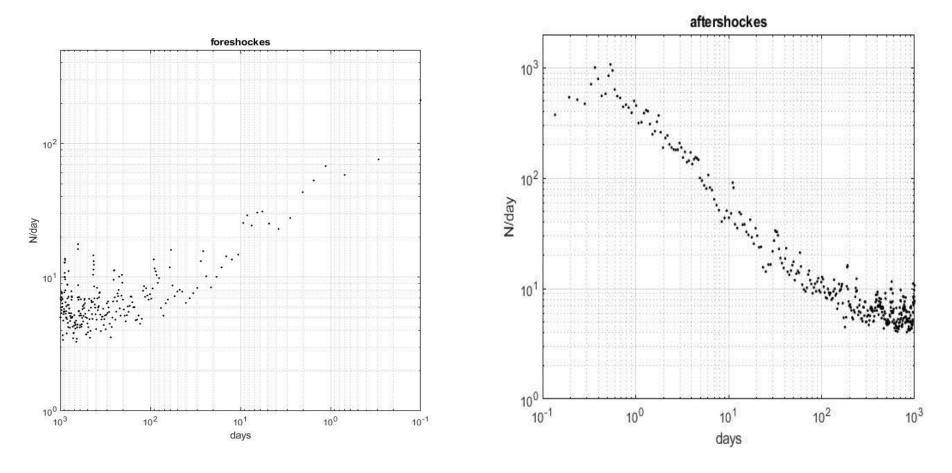
1. Собираются данные по сейсмическому режиму в окрестности 100, 300, 500, 1000 сильнейших (по тм, или как иначе) землетрясений.

2. Выбор пространственно-временной области:

Пространственный размер области выбирался по соотношению между характерным размером очага S или RL и его магнитудой:

S,
$$\kappa_M = 10^{(0.5 \times M - 1.9)}$$
.

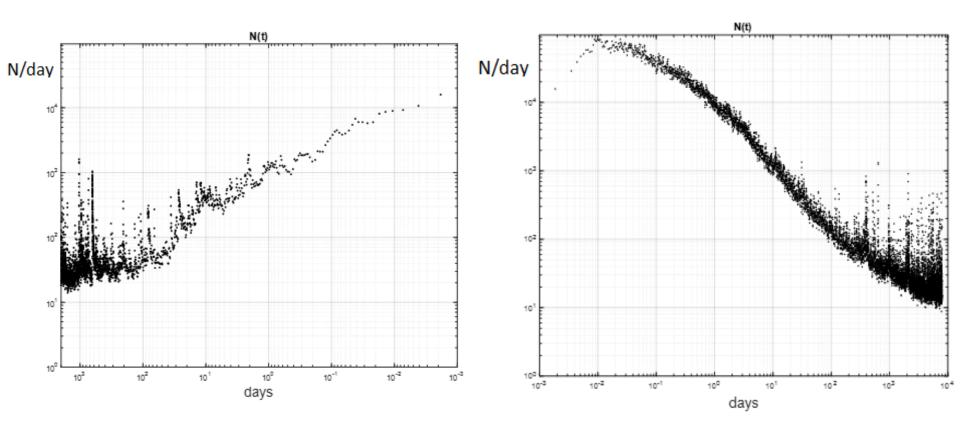
RL, km = 10^(0.59mw-2.44) (Wells & Coppersmith, 1994)


Временной масштаб - с учетом вывода (В.Б.Смирнов, 2003) о близкой длительности подготовки разномасштабных землетрясений - безо всякой нормировки, простым методом наложения эпох

3. Построение «окрестности обобщенного сильного землетрясения», ООСЗ

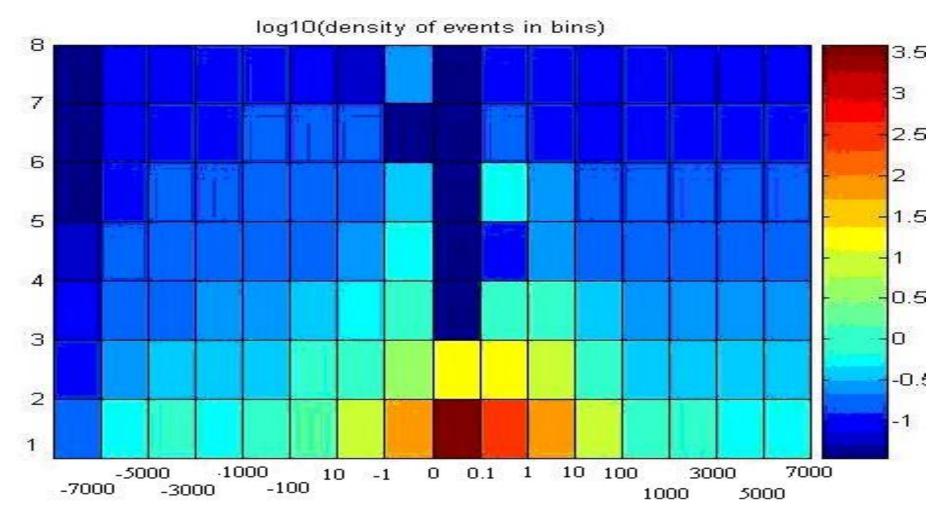
Все попавшие в нее землетрясения сортируются по времени относительно момента обобщенного сильного землетрясения (ОСЗ) и по расстоянию от очага соответствующего сильного события.

Анализируются временные ряды изменения средних параметров для групп последовательных фор- и афтершоковых (слабых) событий.


Примеры типовых аномалий в ООСЗ 1-го типа, GCMT каталог.

Динамика форшокового (a) и афтершокового (b) процесса в ООСЗ, GCMT каталог. Mw>=5.4, 500 событий.

Дефицит числа ранних афтершоков частично связан с недорегистрацией.

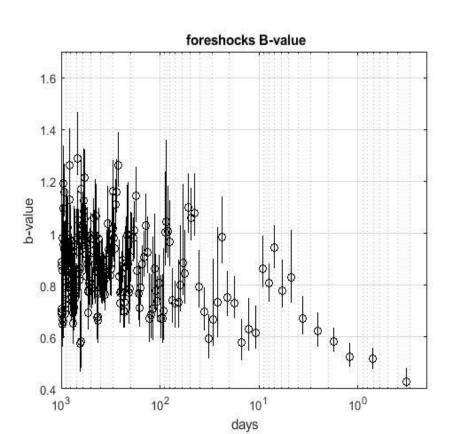

OOC3. Режим фор- и афтершоков по данным **ISC** каталога, Mb>=5.0

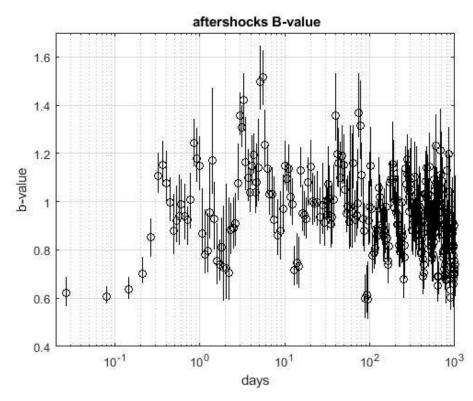
Динамика форшокового (а) и афтершокового (b) процесса в OOC3, ISC каталог, 1000 событий.

Плотность потока событий в OOC3, USGS/NEIC; 500 сильнейших, Mcp=7.2.

Намечаются: 1 - столообразная длительная активизация; 2 - лавинообразный рост за ~100 дней до ОСЗ; 3 - наличие как бы «асейсмичной тени» вокруг широкой очаговой зоны

Координаты: L (штуки), t (дни). Соотношение: M = 6; 7; 8; 9. L = 15; 50; 150; 450 km.

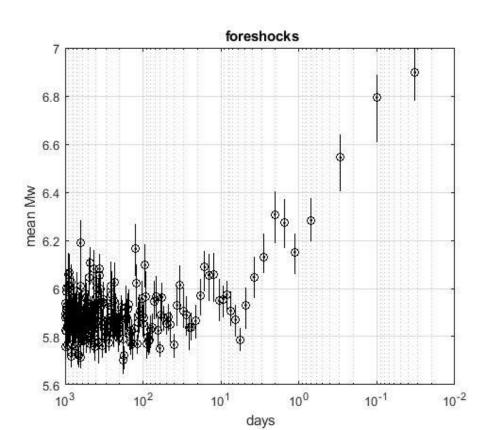

Нерешенные проблемы:

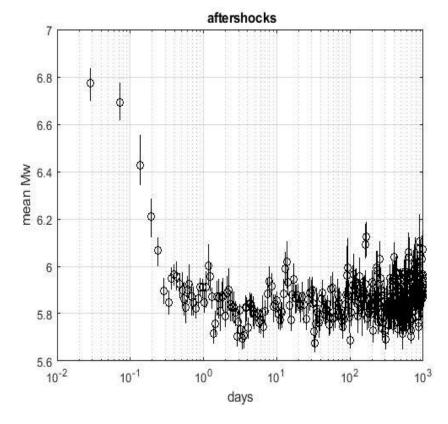

1. В изотропной окрестности ОСЗ НЕ выявлен эффект сейсмического затишья.

2. Природа дефицита ранних афтершоков дискуссионна, отсюда часть эффектов в афтершоковой последовательности могут быть ложными

Аномалии второго типа: $\Upsilon = a - b \log \Delta t$;

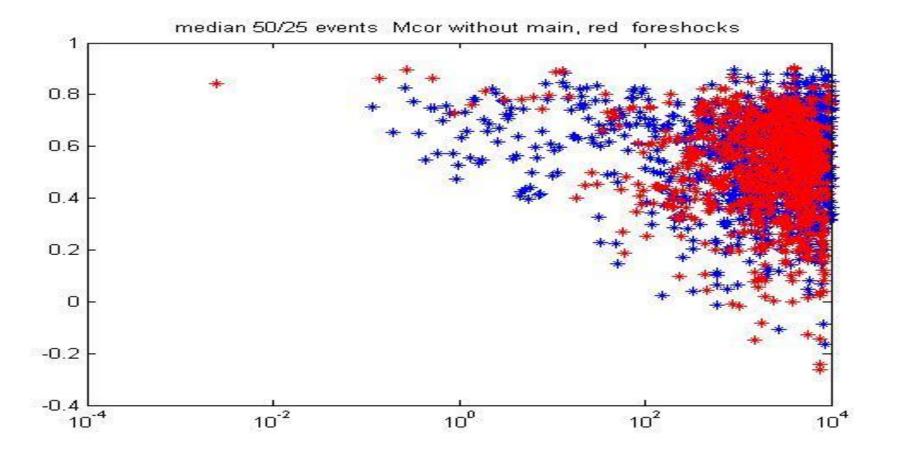
GCMT каталог, b-value

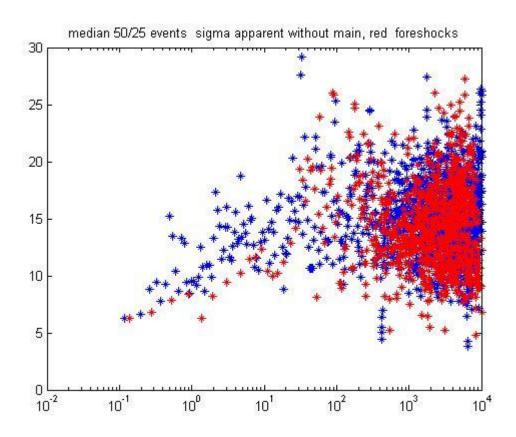




Изменения текущих значений *b-value* в ООСЗ, форшоки (а) и афтершоки (б), GCMT каталог.

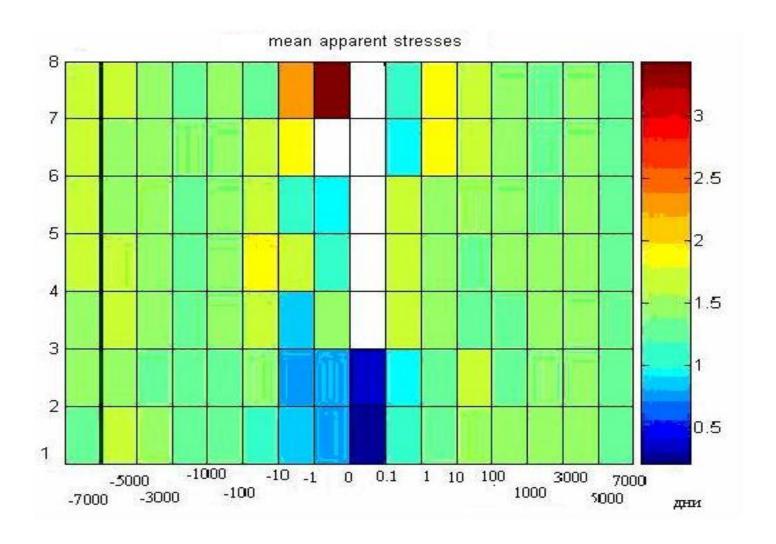
b-value = lg(e) / (mean(M) - Mc).


Первичная аномалия - рост среднего значения магнитуды М?


Средняя магнитуда землетрясений (Мw≥5.4) в ООСЗ, форшоки (а) и афтершоки (б), GCMT каталог

Изменение медианы средней согласованности ориентации очага текущего и главного события K для 50 (шаг 25) событий K = Moij*Mij / $\{ \mid Moij \mid \mid \times \mid Mij \mid \mid \} \}$ форшоки даны красным. **GCMT каталог**

Эффект роста когерентности напряженно-деформируемого состояния в критической области. Эффект ожидаем из теоретических соображений


Изменение медианы для 50 последующих событий (шаг 25) **величин кажущихся напряжений**, **σ**_a (Sigma apparent, бар), форшоки даны красным, афтершоки – синим (1976-2007). **GCMT каталог**

Тенденция уменьшения средних величин о (бар) по мере приближения момента ОСЗ.

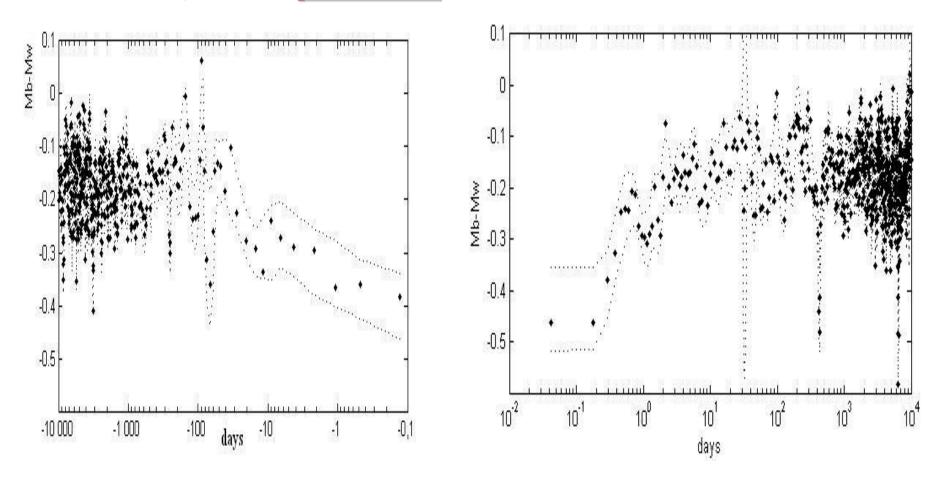
Эффект разупрочнения вещества?

Поведение средних кажущихся напряжений в окрестности обобщенного сильного события, GCMT каталог.

Т.е., имеем падение величин напряжений в области подготовки и реализации сильного события(?) и рост на периферии очаговой зоны(?)

Как бы аналогия

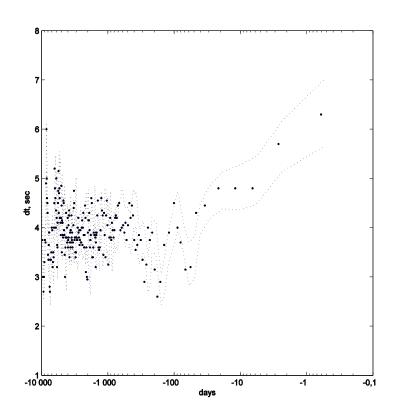
Корреляции величин медианы кажущихся напряжений σ_a и lg(числа землетрясений в ячейке) - пространственной плотности очагов

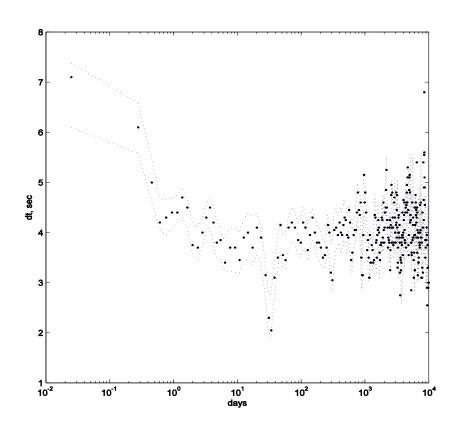

Интерва	Л	Радиус	ячейки,	KM
глубин, км				
	25	50	100	250
0 - 15	-0.20	-0.24	-0.28	-0.31
15 - 30	-0.25	-0.26	-0.27	-0.29
30 – 70	-0.17	-0.20	-0.21	-0.26
70 – 150	-0.11	-0.11	-0.07	-0.05
150-700	-0.18	-0.17	-0.16	-0.11

То есть, как бы тенденция такова:

Тильные и многочисленные землетрясения НЕ там где максимальные напряжения?

Поведение в окрестности обобщенного сильного события: <u>Мb-Мw.</u> Мb определяется по высокочастотному спектру, Mw – по области низких частот

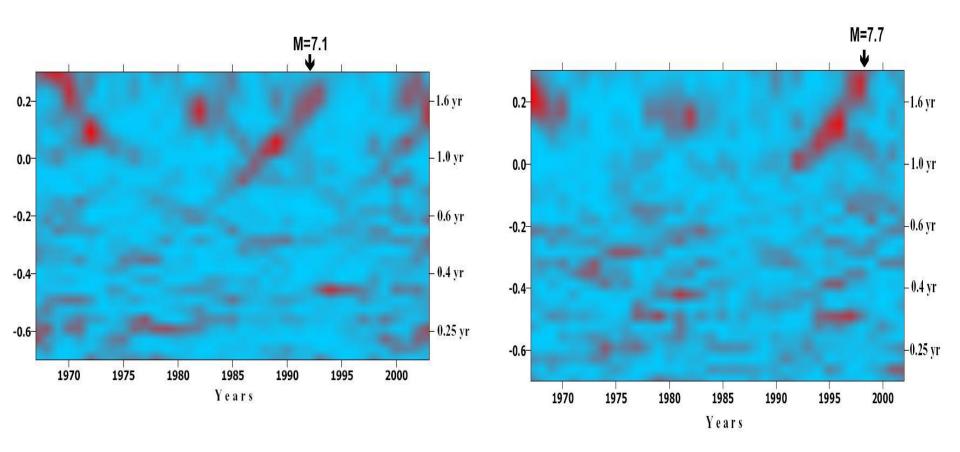

То есть, имеем рост в ООСЗ низкочастотной части спектра



Средние изменения разности Mb-Mw примерно пропорциональны логарифму времени до/после момента сильного землетрясения.

Изменение средней полу-продолжительности сейсмического процесса $\Delta \tau$.

Землетрясения случившиеся в близкой окрестности ОСЗ длятся в среднем дольше, «становятся медленнее»

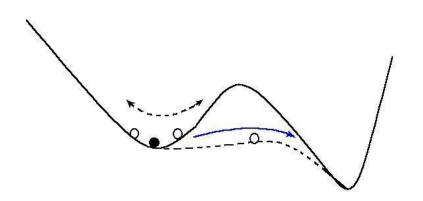


(Δτ - разница времени землетрясения по первым вступлениям и по решению сейсмического момента).

В ООСЗ землетрясения как бы «более медленные» - длятся дольше, - вклад низкочастотных компонент увеличивается.

Но ... примеры уменьшения характерных собственных частот сейсмического режима (сван диаграммы) перед сильными Камчатскими землетрясениями (Соболев и др., 2004)

Ранее близкие результаты (Левин, Сасорова, 1999)


Итак, в области реализации сильных землетрясений наблюдаем: Уменьшение

- -наклона графика повторяемости,
 - кажущихся напряжений
 - значений Mb-Mw и Mb/Mw.

Увеличение

- -числа событий
- -- средней магнитуды события
 - полу-продолжительности сейсмического процесса,
 - вклада низкочастотных компонент,
- однородности напряженнодеформируемого состояния.

Шарик в потенциальной яме - общая модель катастрофы (Хакен, 1974)

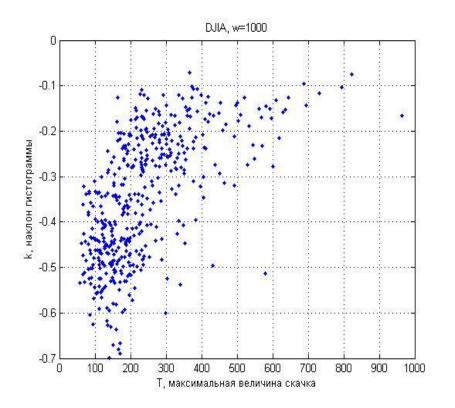
По мере приближения момента катастрофы (перескока шарика в новое равновесное состояние) — увеличиваются периоды и амплитуды шумовых колебаний шарика.

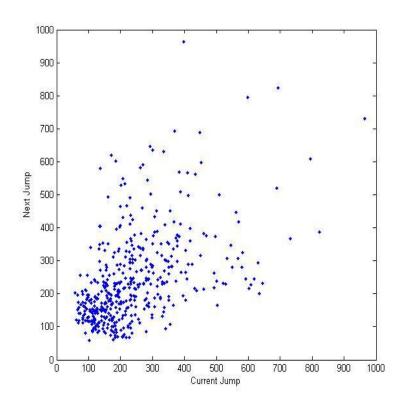
Такие изменения указывают на потерю устойчивости системы и ожидаемы.

Но они не указывают на механизм потери устойчивости.

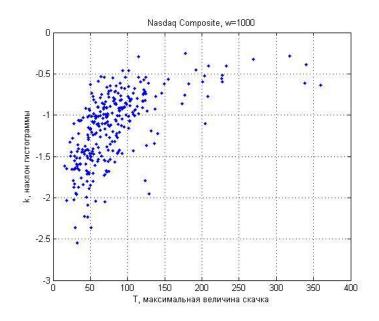
Назовем такие признаки неспецифическими

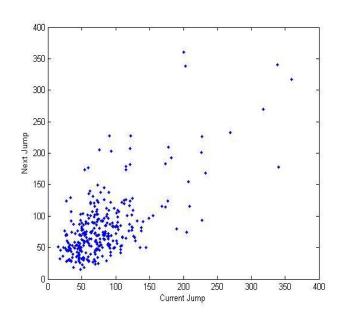
Также не ясно:

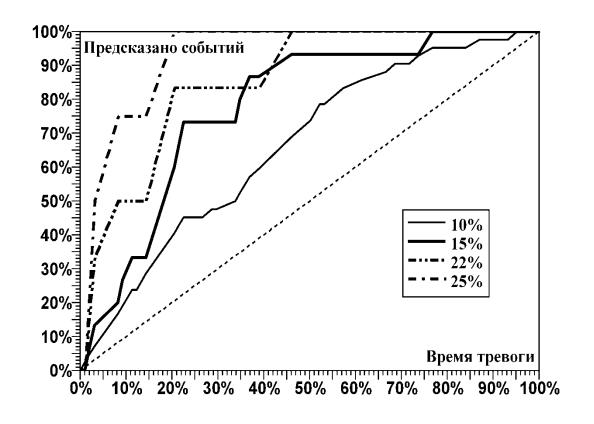

Какие из приведенных аномалий собственно независимые?


Многие из аномалий могут иметь вторичный характер и порождаться ростом среднего значения магнитуды (или насыщением икалы Мв для сильных землетрясений).

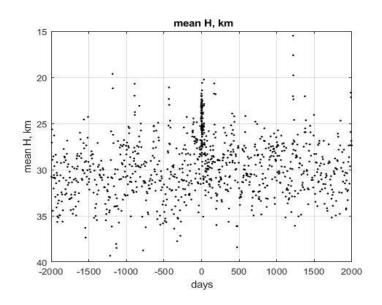
Эффект роста среднего размера события в преддверии возникновения сильного события – почти тавтология.

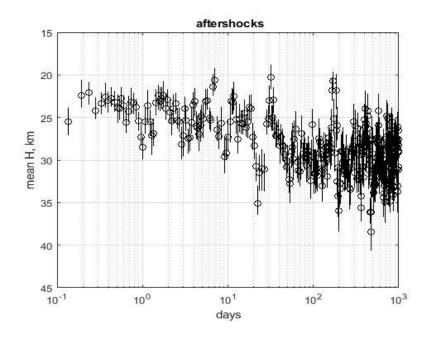

В спектральной области такому росту обычно отвечает рост низкочастотного спектра (выполаживание линии наклона графика логарифмов амплитуд спектра — спектрального аналога b-value).

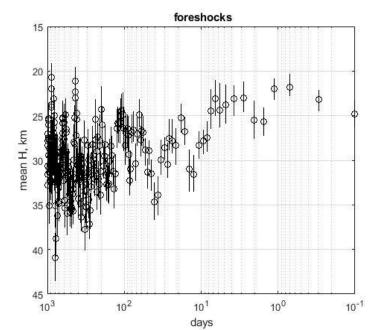

Такая тенденция выявляется, например, для длинных числовых рядов котировок акций.


Связь наклона гистограммы и максимального приращения в будущем времени (слева); прогноз по факту (справа). Индекс Доу-Джонса.

Связь наклона гистограммы и максимального приращения в будущем времени (слева); прогноз по факту (справа). Индекс Nasdaq Composite.

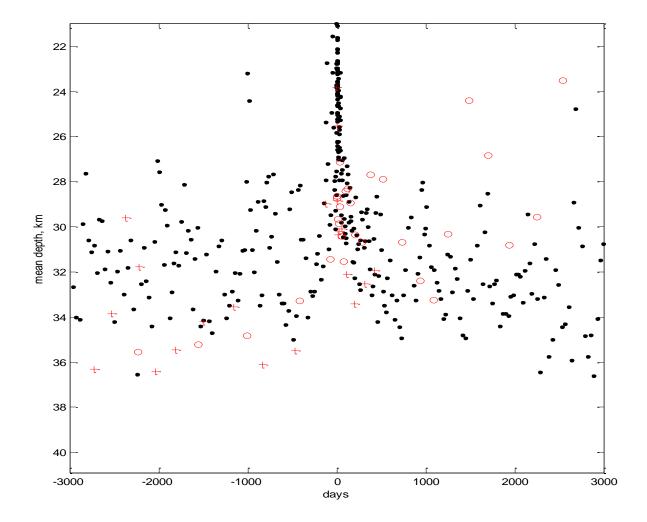

Процент спрогнозированных скачков стоимости акций в зависимости от времени тревог. Расчеты даны для случаев скачков не менее 25, 22, 15 и 10% от среднего значения




· Так же, как в случае прогноза землетрясений - тенденция есть, статистическая предсказательная сила мала для практических целей

Кроме неспецифических в ООСЗ есть и специфическая

аномалия



Изменения средней глубины событий в ООСЗ в логарифмической шкале по оси времени для форшоков (а) и афтершоков (b), каталог GCMT.

Следствие развития трещиноватости, роста проницаемости и прорыва флюида вверх?

Изменение средней глубины групп последующих землетрясений в обобщенной окрестности сильного землетрясения - очаги «всплывают».

Красным: данные по Андаманскому, 2004 (кружки) и Тохоку (плюсы) М9+ мега-землетрясениям.

Нерешенные проблемы и вопросы:

Для афтершоков эффект может порождаться меньшей, в среднем, глубиной афтершоков.

Но аналогия с режимом форшоков дает основания связать эффект «всплывания» с развитием трещиноватости и прорывом легкого флюида в верхние горизонты.

Косвенно эффект указывает на типичность наличия в очаговой области сильных землетрясений флюида низкой плотности.

ИНТЕРПРЕТАЦМЯ. <u>1. Модель ММК:</u>

Пусть событие случайной величиной X в некий момент і может либо продолжить свое развитие с вероятностью p, либо затухнуть с вероятностью (1-p). При продолжении развития, положим, что событие переходит на следующий масштабный уровень $X_{i+1} = a + k X_i$, где k случайная величина, k>1, a-cлучайная величина.

Параметр k назовем параметром иерархичности среды (и положим k~3, по Садовскому),

р назовем параметром метастабильности.

<u>Кумулятивно-мультипликативный</u> процесс может с равной вероятностью прерваться в любой момент времени.

В результате реализации множества эпизодов лавинообразной релаксации будем иметь на выходе набор величин {X}, где значения {X}, аналогичны энергии (сейсмическому моменту) землетрясений и распределены по степенному закону с наклоном графика повторяемости:

b = -ln(p)/ln(k), р - параметр метастабильности

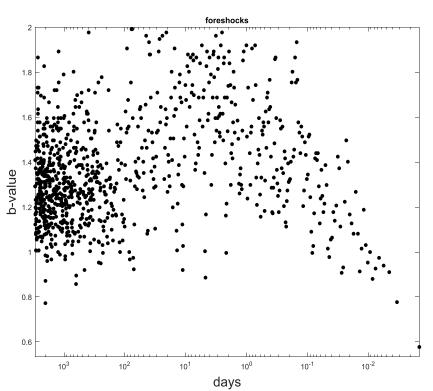
Связь аномалий в ООСЗ с моделями сейсмического режима

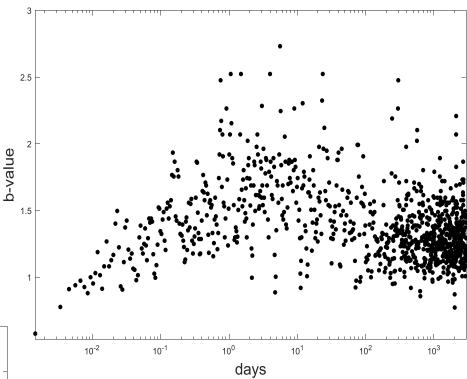
Типовая (минус логарифм времени до момента события) аномалия в ООСЗ Имеет вид: $\Upsilon = a - b \log (|\Delta t|)$ (1)

По ММК модели имеем $\beta = -\frac{\log(p)}{\log(r)}$ (2) аналогично (1), зависимость однотипная.

По кинетической модели разрушения Журкова вероятность разрушения р:

$$log(P) = s + d\sigma.$$
 (3) также похоже.

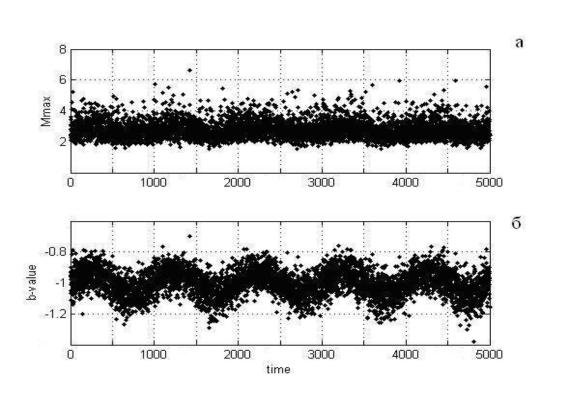

Но для критических явлений имеем аномалию $\Upsilon = \alpha \ (\Delta T)^{\gamma}$

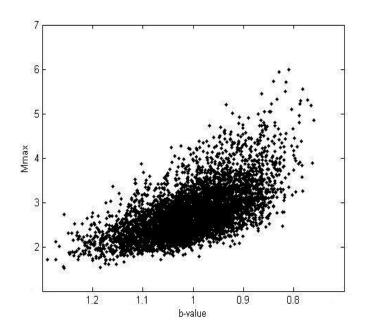

Согласованность такой аномалии с соотношением (1) дискуссионна

- 1. Модель ММК сейсмического режима как последовательности эпизодов реализации метастабильных состояний (подсистем) позволяет описать все (кроме сейсмического затишья) известные эмпирические закономерности сейсмического режима
- 2. Эмпирика в ООСЗ дает комплекс типовых признаков сейсмического режима в фор- и афтершоковой области база для формирования банка предвестников?
- 3. Анализ ООСЗ и модель ММК задают похожий характер роста аномалии перед сильным событием как минус логарифм времени до момента сильного события.
- 4. Прогноз ОСЗ в ООСЗ тривиален. Для прогноза отдельного сильного события мало данных? Или каждое событие останется неповторимым?
- 5. Не является ли аномалия типа $\Upsilon = \mathbf{a} \mathbf{b} \lg (|\Delta T|)$ новым законом сейсмологии ??

СПАСИБО ЗА ВНИМАНИЕ

ISC каталог





Изменения текущих значений b-value в ООСЗ, форшоки (а) и афтершоки (б), ISC каталог. <u>Иллюстрация ММК.</u> Приняв разумные параметры модели {**p,k**} и полагая некое среднее в единицу времени (Пуассоновский процесс) число событий N смоделируем «временную» реализацию «сейсмического режима». Зададим **p** со слабой гармонической компонентой.

Пример реализации такой стохастической модели сейсмического режима для 5000 единиц времени:

- (a) максимальные значения магнитуд Mmax(t) { магнитуда = a + c lg(X) }
- (б) значения наклона графика повторяемости b(t).

Имеем прогнозный признак - наклон графика повторяемости статистически уменьшается перед сильным землетрясением

Пусть событие – прольется вода на стол из стакана, или нет

Вода может пролиться:

- если упадет яблоко и сшибет стакан,
- если включить кипятильник, вода вскипит и выплеснется.

«Прогнозные признаки»:

- начавшийся ветер
- включение кипятильника,

Общие признаки развития неустойчивости или Конкретный физический процесс, порождающий событие.

Во втором случае прогноз почти детерминистический (и есть процесс подготовки),

В первом - чисто статистический (но, возможно, достаточно полезный).