ХІ международная школа-семинар «Физические основы прогнозирования разрушения горных пород» 14-18 октября 2019 г.

Влияние геомеханических и флюидодинамических параметров на микросейсмичность при гидроразрыве пласта.

^{1,2}Турунтаев С.Б., ¹Зенченко Е.В., ¹Тримонова М.А., ¹Зенченко П.Е., ¹Барышников Н.А., ²А.А. Лукина ¹ИДГ РАН (Москва), ²МФТИ (Москва)

Содержание

- Состояние проблемы связи ГРП и сейсмичности
- Моделирование ГРП
- Результаты
 - Давление гидроразрыва
 - Давление закрытия трещины ГРП
 - Взаимодействие трещин
 - АЭ при ГРП с использованием жидкости разной вязкости
- Выводы

Состояние проблемы

- Гидравлический разрыв пласта, осуществляемый путем закачки жидкости в скважину под давлением, остается основным методом увеличения притока нефти к скважине.
- Нефтедобывающие и нефтесервисные компании при проведении гидроразрыва сталкиваются с проблемами, связанными с недостаточной проработанностью физических моделей.
- Развитие и усложнение моделей требует постановки лабораторных экспериментов, позволяющих оценить влияние тех или иных факторов на развитие трещин ГРП.
- Побочным эффектом проведения работ по ГРП является появление техногенных сейсмических событий.
- События малой магнитуды используются как основной индикатор положения и размеров трещин гидроразрыва.
- В ряде районов интенсивной разработки месторождений и массового применения ГРП отмечается многократное возрастание сейсмической активности и появление ощутимых землетрясений.

Усиление сейсмической активности при разработке сланцевых месторождений нефти, США

2009-2015 361 М≥3 /год

1973-2008 24 М≥3 /год

William L. Ellsworth et al. Stanford Centre for Induced and Triggered Seismicity

Development Scheme and Multi-Zone Well Pads

5 horizontal laterals per zone on each 960-acre unit 5 target pay zones 25 horizontal long laterals with potential upside from additional stacked pay zones

Horizontal Fairway
 Vertical 20-acre location

Vertical 40-acre location
 Horizontal Well pad

Базельский геотермальный проект

Marcus Herrmann, Toni Kraft, Stefan Wiemer

Microseismic Monitoring Developments in Hydraulic Fracture Stimulation Mirko van der Baan, David Eaton and Maurice Dusseault

Институт гидродинамики CO PAH

#3 - Marble

- Viscosity/lag dominated experiment
- Silicon oil 45Pa.s @ 0.02mL/min
- Stress 10-10-0 MPa
- Problem at the notch/completion tool location resulted in a curved fracture $t_{mk} = 176 s.$

Dye smeared on the face of the block

Fracture F2

Fracture F4 Fracture F3

Fracture F1

Теоретические модели должны поверяться лабораторными экспериментами

J. Groenenboom, D.B. van Dam,* SPE, and C.J. de Pater, SPE, Delft U. of Technology

El Rabaa, W.: SPE 19720, SPE Annual Technical Conference and Exhibition, San Antonio, TX, Oct. 8-11, 1989

Laboratory Hydraulic Fracturing Tests on Small Homogeneous and Laminated Blocks Athavale, A.S., Miskimins, J.L. 2008, ARMA 08-067. Experimental Investigation of Geomechanical Aspects of Hydraulic Fracturin Unconventional Formations by Emad Abbad Alabbad, MS Thesis The University of Texas at Austin, 2014

- Для прогнозирования геометрии существует большое количество моделей, различающихся постановкой задачи, количеством допущений и сложностью, начиная от классических аналитических моделей [Желтов, Христианович, 1955; Perkins, Kern, 1961; Geertsma, de Klerk, 1969] и заканчивая современными численными моделями [Adachi et al., 2007, Petunin, 2013; Savenkov, Borisov, 2018, Lecampion, 2018].
- Сложность моделирования распространения трещины ГРП обусловлена большим количеством параметров, характеризующих жидкость разрыва и породу, а также необходимостью одновременного рассмотрения гидродинамических и геомеханических процессов.

Решаемые задачи

- 1. Исследовать условия возникновения и распространения трещины гидроразрыва;
- 2. Измерить скорость распространения трещины;
- Исследовать образование трещины повторного гидроразрыва при изменении напряженно-деформированного состояния;
- 4. Измерить скорость распространения фронта жидкости в трещине;
- 5. Исследовать повторное открытие трещины ГРП;
- Определить положение источников акустической эмиссии при распространении трещины ГРП.

Характерные параметры кривой давления на забое скважины при ГРП

Лабораторная установка ИДГ РАН для проведения

экспериментов по ГРП с возможностью задавать постоянный расход или давление в скважине, задавать горизонтальные и вертикальные напряжения, контраст горизонтальных напряжений, регистрировать поровое давление, микросейсмическую (акустическую) эмиссию

Создаваемые нагрузки:

- вертикальное напряжение до 120 атм;
- горизонтальные напряжения по двум осям до 80 атм;
- ∎ поровое давление до 110 атм.
- Параметры закачки жидкости:
- при постоянном давлении (до 110 атм)
- при постоянном расходе (до 0.3 см³/сек)
- при постоянном перепаде давления (до 80 атм между точками закачки и стока)
- Регистрируемые величины:
 - расход и давление вытекающей из образца и закачиваемой в образец жидкости; поровое давление (до 15 точек измерения); импульсы акустической эмиссии в 15 фиксированных точках (определение положения источников сигнала с точностью 5 мм); интервальное время пробега продольной волны.

Экспериментальная установка

НАГРУЖЕНИЕ ПО ОСИ Х 2МПА

Расчеты и измерения напряженно-деформированного состояния

- В качестве модельного материала • использовался гипс с цементом в соотношении 9:1, к смеси добавлялось 45% воды
- Пористость 40-50% ٠
- Проницаемость 1 2.7 мД

Образец насыщался раствором гипса в воде. В качестве жидкости гидроразрыва использовалось минеральное вакуумное масло (вязкость 112 сПуаз, плотность $0,86r/cm^{3}$)

Подобие: безразмерные параметры

напряжения

трещиностойкость

время $N_t = \frac{\iota}{r_w^3}$, проницаемость $N_{\bar{E}} = \frac{\bar{E}r_w^3}{\bar{\mu}i}$ утечки $N_{K_l} = K_l \sqrt{\frac{r_w}{i}},$ апряжения $N_{\sigma} = \frac{\sigma}{\overline{E}},$ юстойкость $\frac{N_{K_1}}{\overline{E}} = \frac{K_{1c}^2}{\overline{E}^2},$ контраст напряжений

Содержание (цемент/гипс)	1/8	1/8	1/8 + сил.клей	1/8 + сил.клей	1/10	1/10
Проницаемость (мДарси)	23.3	23.6	24.9	24.4	17.8	17.9

$$\sigma_{UCS} = 6.4 \pm 0.93 MPa \quad \sigma_{TSTR} = 0.8 \pm 0.18 MPa$$

	Bulk density, g/sm ³	P-wave velocity in massif, m/s	Rod p-wave velocity, m/s	Young's Modulus, GPa	Poisson's Ratio
Dynamic	1.77	2310	2100	7.7	0.26
Static	1.77	2260	-	3.6	0.21

C.J. de Pater, M.P. Cleary, T.S. Quinn. SPE Production & Facilities. 1994, November: 230-238. C.J. de Pater, Leen Weijers, Miloi Savic.. SPE Production & Facilities. 1994, November: 239-249.

 $\sigma_{TSTR} = 0.8 \pm 0.18 MPa$ FBP $\gg 3\sigma_{min} - \sigma_{max} + \sigma_{p}$, FPP $\gg 3\sigma_{min} - \sigma_{max}$, FCP $\gg \sigma_{min}$

Вертикальное давление, Мпа 7,1 Минимальное горизонтальное напряжение, Мпа 0,55 • 1,0 Максимальное горизонтальное напряжение, Мпа ٠ Давление в нагнетательной скважине, Мпа 1,0 0,37 Расход масла в центральной скважине, см³/с Угол между направлением максимального • 22,5 напряжения и осью скважин, градусы

Взаимодействие трещин ГРП

Измерения динамики образования трещины

Схематический рисунок трещины после первого ГРП (красная линия). Синие отрезки соединяют излучатель А0 и используемые приёмники в нижней крышке.

Фото образца после первого и двух повторных ГРП с наложением схемы расположения акустических пьезопреобразователей и точек измерения порового давления

Создание горизонтальной трещины ГРП

Образовавшаяся трещина имела дисковый горизонтальный участок радиусом 36 мм, затем отклонилась от горизонтального распространения и вышла на верхнюю поверхность образца.

Был выполнен ряд экспериментов по нагнетанию жидкости и сбросу давления при разных значениях вертикальных напряжений в диапазоне 0,5...2,5 МПа

Создание вторичной вертикальной трещины ГРП

- Серия экспериментов на том же образце, в которых вертикальное напряжение значительно превышало горизонтальные (6,9 МПа – вертикальное, 3,2 МПа и 0,95 МПа – горизонтальные).
- Образовалась вертикальная трещина, которая пересекла прежнюю горизонтальную.

Результаты ГРП1: давление в скважине и изменение амплитуды проходящих волн

Рост амплитуды после начального падения связан с заполнением трещины жидкостью, как отмечено в работе: (Medlin W.L., Masse L. Laboratory Experiments in Fracture Propagation. SPE. June 1984. PP 256-268). Скорость заполнения трещины примерно 35 мм/с 20

Давление в скважине

P, = P,

150

150

Вертикальное давление

200

A9 A10

A12

A13

A14 A15

200

Закачка в трещину ГРП при вертикальном давлении 1 МПа. Давление в боковых камерах 0,2 МПа. После достижения пикового давления нагнетание останавливалось.

Δ0 A13 A9 A10 A14 A12 A15

Повторное открытие трещины ГРП1 при разных вертикальных

Вертикальное давление, МПа

Результаты ГРП2 и ГРП3: создание и рост вертикальной

трешины

Вертикальное давление – 6,8 МПа

Давление в камере по оси Х – 3,2 МПа

Давление в камере по оси У – 1 МПа

Максимальное давление в скважине – 12,5 МПа

Трещина ГРП прошла приблизительно в направлении максимального горизонтального сжимающего напряжения

Характерные параметры кривой давления

$$FBP= 3\sigma_{min} - \sigma_{max} + \sigma_{p}, \quad (1)$$

$$FPP= 3\sigma_{min} - \sigma_{max}, \quad (2)$$

$$FCP= \sigma_{min}, \quad (3)$$

0.05

0.1

0.15

G-функция

0.25

0.3

0.35

0.2

Давление закрытия трещины, определенное по методу G-функции 4.9 Мпа (а) и 5.5 (б), оказывается много больше минимальных напряжений 0.55 МПа.

$$G(\delta_0, \delta) = \frac{16}{3\pi} [(1+\delta)^{3/2} - \delta^{3/2} - (1+\delta_0)^{3/2} + \delta_0^{3/2}]$$
$$\delta = \frac{\Delta t}{t_0} = \frac{t-t_0}{t_0}$$

Nolte, K. G.: "Determination of Fracture Parameters from Fracturing Pressure Decline," Las Vegas (1979).

Nolte, K. G., Maniere, J. L., Owens, K. A.: "After-Closure Analysis of Fracture Calibration Tests," Texas (1997).

Hickman S.H., Zoback M.D.: "The interpretation of hydraulic fracturing pressure-time data for in situ stress determination. Hydraulic Fracturing Measurements." Washington (1983).

МикроГРП в лабораторных условиях с использованием маловязкой жидкости (вода).

Область окружающего порового пространства, заполнившаяся жидкостью при проведении ГРП

10

Time, s

8

6

12

14

16

18

20

-0.1 ----0

Сухая часть трещины заполненная жидкостью

Часть трещины,

Результаты

- Условием появления вторичной трещины ГРП является значительное изменение ориентации осей главных напряжений.
- Развитие трещин ГРП происходит в три этапа:
 - возникновение сухой трещины,
 - заполнение трещины жидкостью,
 - раскрытие трещины
- Скорость роста сухой трещины оценивается в 130 мм/с
- Скорость заполнения жидкостью в экспериментах составила 35 мм/с.
- Давление раскрытия и закрытия трещины в первом приближении линейно зависят от минимального главного напряжения
- Давление образования и закрытия трещины не определяются простейшими используемыми моделями
- В случае, когда вязкость жидкости ГРП существенно превышает вязкость пластового флюида, не возникает условий для появления микросейсмических событий вне трещины ГРП

Заключение

Причины расхождения простейших модельных представлений и результатов экспериментов:

- 1. Пластическая деформация материала, предваряющая образование трещин
- 2. Изменение коэффициента трещиностойкости
- 3. Неопределенность критерия образования трещины
- 4. Диффузия порового давления в окружающее пространство (back pressure)
- 5. Отставание заполнения жидкостью трещины от времени образования и распространения трещины ГРП

Дальнейшее развитие моделей, включение нелинейных пороупругих эффектов, учет раскрытия, роста трещин и их влияния на фильтрацию – все это позволит более адекватно описывать результаты наблюдений и решать задачу оценки режимов и магнитуд индуцированных сейсмических событий и их связи с процессами разработки 28

References

- M. Trimonova, N. Baryshnikov, E. Zenchenko, P. Zenchenko, S. Turuntaev. Study of Hydraulic Fracture Influence on the Surrounding Rock Permeability. // 79th EAGE Conference & Exhibition 2017 Paris, France, 12-15 June 2017, DOI: 10.3997/2214-4609.201701322.
- M. Trimonova, N. Baryshnikov, E. Zenchenko, P. Zenchenko, S. Turuntaev. The Study of the Unstable Fracture Propagation in the Injection Well: Numerical and Laboratory Modeling. // SPE-187822-MS. 2017. DOI: 10.2118/187822-MS
- Turuntaev, SB; Zenchenko, EV; Zenchenko, PE; Triminova, MA; Baryshnikov, NA and Aigozhieva, AK. An influence of pore pressure gradient on hydraulic fracture propagation [online]. In: 9th Australasian Congress on Applied Mechanics (ACAM9). Sydney: Engineers Australia, 2017: [712]-[723].
- Trimonova M., Zenchenko E., Baryshnikov N., Turuntaev S., Zenchenko P., Aigozhieva A. (2018) Estimation of the Hydraulic Fracture Propagation Rate in the Laboratory Experiment. In: Karev V., Klimov D., Pokazeev K. (eds) Physical and Mathematical Modeling of Earth and Environment Processes. PMMEEP 2017. Springer Geology. Springer, Cham. doi.org/10.1007/978-3-319-77788-7_27
- Dubinya N., Triminova M., TyurinA, Golovin Yu., Zenchenko E., Samodurov A., Turuntaev S., Fokin I. Experimental and Theoretical Study of Fracture Toughness Effect on Hydraulic Fracture's Geometry // SPE Russian Petroleum Technology Conference. 2018. SPE-191630-MS, <u>https://doi.org/10.2118/191630-18RPTC-MS</u>.
- M.A. Trimonova, E.V. Zenchenko, P.E. Zenchenko, S.B. Turuntaev and N.A. Baryshnikov. Determination of the Fracture Opening Pressure: Experiment Vs. Theory. // Geomodel 2018. DOI: 10.3997/2214-4609.201802421
- Trimonova M.A. Zenchenko E.V. Turuntaev S.B., Golovin Yu.I., Samodurov A.A., Tyurin A.I., Dubinya N.V. Rock Toughness Importance For Hydraulic Fracture Modelling. AIP Conference Proceedings 2051, 020308 (2018), DOI: <u>10.1063/1.5083551</u>
- Sergey Turuntaev, Evgeny Zenchenko, Maria Trimonova, Petr Zenchenko, Nikolay Baryshnikov, and Akbota Aigozhieva. Interactions of hydraulic fractures. // Advances in Mechanics: Failure, Deformation, Fatigue, Waves and Monitoring. Proceedings of The 11th International Conference on Structural Integrity and Failure. Perth. PP. 88-94. 2018.

СПАСИБО ЗА ВНИМАНИЕ!

Месторождение Groningen, Нидерланды

Stephen Bourne¹, Steve Oates¹, Jan van Ek²

¹ Shell Global Solutions International B.V., The Netherlands ² Nederlandse Aardolie Maatschappij B.V., The Netherlands

Землетрясение M=5.4 Pohang, Южная Корея,

Date [Month Year]

Модели сейсмичности при изменении порового давления

Применение модели для случая Базеля

Турунтаев С.Б., Рига В.Ю. // Триггерные эффекты в геосистемах (ред. Адушкин, Кочарян), 2017, 29-39.